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1. 

In Figures 1 and 2 are shown two systems which oscillate in the horizontal
direction. The three bodies each have unit mass, the springs have unit stiffness,
and the dashpots have constant c. One of the systems oscillates indefinitely, while
all oscillations are eventually damped out for the other one. Which one oscillates
indefinitely?

2. 

It is readily shown that the equations of motion of system A are

ẍ+ c(ẋ− ż)+2x− y=0, ÿ+2y− x− z=0, z̈+ c(ż− ẋ)+2z− y=0,

(1–3)

where x, y and z are the displacements as indicated in Figure 1.
Insight into the problem may be obtained by calculating the natural frequencies

and mode shapes corresponding to the underdamped case. If we set c, the damping
constant, equal to zero and assume x=X sin lt, y=Y sin lt and z=Z sin lt we
obtain: Y=0 and Z=X for the frequency l1 =z2, Y=z2X and Z=X for the
frequency l2 = (1+z2)1/2 and Y=−z2X and Z=X for the frequency
l3 = (2−z2)1/2. The mode shapes are plotted in Figure 3.

Guided by the mode shapes we make the variable changes:

x=A+B+D, y=z2A−z2B, z=A+B−D. (4–6)

Equations (1)–(3) then become

A� +B� +D� +2cD� +(2−z2)A+(2+z2)B+2D=0, (7)

z2A� −z2B� +(2z2−2)A−(2z2+2)B=0, (8)

A� +B� −D� −2cD� +(2−z2)A+(2+z2)B−2D=0. (9)

Equation (7) minus equation (9) then yields

D� +2cD� +2D=0. (10)

0022–460X/99/300937+04 $30.00/0 7 1999 Academic Press



C

x y z

C

x y z

C

   938

Figure 1. System A.

Equation (7) plus equation (9) plus z2 times equation (8) then yields

A� +(2−z2)A=0. (11)

Similarly

B� +(2+z2)B=0. (12)

Equation (10) indicates damped motion, and equations (11) and (12) indicate
undampedmotion.Hence for general initial values ofx, y, z, ẋ, ẏ and ż, finitemotion
remains for system A.

Similarly, for system B, we obtain

A� +(c/2)A� +(2−z2)A=−c(3/2+z2)B� , (13)

B� +(c/2)B� +(2+z2)B=−c(3/2−z2)A� , D� + cD� +2D=0. (14, 15)

Equations (13)–(15) all indicate damped motion, so that all oscillations are
eventually damped out. Both dashpots come into play for any motion of the system.

A similar system involving only two degrees of freedom was considered by Wilms
and Pinkney [1], Stephen [2] and Gürgöze [3].

Figure 2. System B.
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Figure 3. The undamped mode shapes: (a) l1 =z2, (b) l2 = (2+z2)1/2, (c) l3 = (2−z2)1/2.
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